Класичні теореми геометрії

1. Адамар Ж. Неевклидова геометрия в теории автоморфных функций / Ж. Адамар. – Москва ; Ленинград : Гостехтеоретиздат, 1951. – 134 с. 
2. Адлер А. Теория геометрических построений / А. Адлер ; пер. с нем. Г. М. Фихтенгольца. – Ленинград : Гос. учеб.-пед. изд-во Наркомпроса РСФСР, 1940. – 232 с. 
3. Бахтин А. К. О некоторых экстремальных задачах геометрической теории функций комплексного переменного / А. К. Бахтин // Доповіді Національної Академії Наук України: Математика. Природознавство. Технічні науки. – 2006. – № 9. – С. 7–11.
4. Болтянский В. Г. Теоремы и задачи комбинаторной геометрии / В. Г. Болтянский, И. Ц. Гохберг. – Москва : Наука, 1965. – 108 с. 
5. Голузин Г. М. Геометрическая теория функций комплексного переменного / Г. М. Голузин ; под ред. В. И. Смирнова. – Изд. 2-е. – Москва : Наука, 1966. – 628 с. 
6. Дьедонне Ж. Геометрическая теория инвариантов / Ж. Дьедонне, Дж. Керрол, Д. Мамфорд ; пер. с англ. А. Н. Паршина. – Москва : Мир, 1974. – 280 с. 
7. Ізюмченко Л. В. Використання класичних теорем геометрії у підготовці до учнівських олімпіад із математики / Л. В. Ізюмченко, Л. А. Ткаченко // Математика в школах України. – 2017. – № 34. – С. 26–37. – Бібліогр. в кінці. ст.
8. Конет І. М. Теорема Стюарта та ряд рівних відношень в геометрії трикутника / І. М. Конет, В. В. Мойко // Математика в школах України. – 2005. – № 28. – С. 1–16. 
9. Рашевский П. К. Геометрическая теория уравнений с частными производными / П. К. Рашевский. – Москва : ОГИЗ ; Л. : Гостехиздат, 1947. – 354 с. 
10. Сапсай Б. Теореми Чеви і Менелая у методичній системі узагальнення і систематизації знань учнів з геометрії / Б. Сапсай // Математика в рідній школі. – 2018. – № 7/8. – С. 38–41.
11. Скопец З. А. Задачи и теоремы по геометрии : планиметрия : пособие для студ. пед. ин-тов / З. А. Скопец, В. А. Жаров. – Москва : Учпедгиз, 1962. – 163 с. 
12. Скорик Н. Застосування теореми Фалеса та методу ваг до розв'язування геометричних задач на відношення / Наталія Скорик // Математика. Шкільний світ. – 2013. – № 35. – С. 17–21.
13. Ткач, М. В. Теорія оптимізації геометричного дизайну двобар'єрного нанодетектора, що працює на квантових переходах між двома найнижчими квазістаціонарними станами електрона / М. В. Ткач, Ю. О. Сеті, В. О. Матієк // Журнал фізичних досліджень. – 2011. – Т.15, № 2. – С. 2706-1–2706-7.
14. Штейнгарц Л. Новый взгляд на теорему Штейнера-Лемуса. Или о предложении некоторых неточностей и заблуждений в геометрии / Лейб Штейнгарц // Математика в школе. – 2013. – № 6. – С. 54–57. – Библиогр. в конце ст.
15. Федерер Г. Геометрическая теория меры / Г. Федерер. – Москва : Наука, 1987. – 760 с.

Довідку підготувала У. І. Безпалько,
квітень 2020 р., 15 джерел

ResourceТNPU

Ministry of Education and Science of Ukraine

Online resource TNPU

Всеукраїнські ресурси

Scientometry

Partners

We are on social networks